A Practical Guide To Making
Your Test Suite Suck Less

Greg Banks

<gnb@users.sourceforge.net>

Open Source Developers' Conference
Melbourne, Australia Dec 2006

* Scope

« What is test coverage?

» How does test coverage work?
* How to interpret results

« What to expect

« What NOT to expect

 Extra topics

« GNU Compiler Collection 4.1
« Cand C++

« UNIX-like platforms

 Similar techniques apply to
— other platforms
— other compilers
- other languages

 Licence neutral (IANAL)

* Measuring how much of your code is run
(“covered”) when your code's test suite runs

Why do test coverage?

» Working code can stop working
- due to changes to the environment, other code
- sometimes code works “by accident”

« => code must be tested regularly
- untested code is buggy code
« => need a test suite which is run regularly

A test suite is only useful if it runs your code
— Test coverage provides one measure of that

Just Do It!

« Test coverage Is sorely underused

. Testing is often “2™ class”
- management pays lip service
- but nothing actually happens

« “Our test suite takes 8 hours to run, it must
be good!”
— 1000s of runs of the same 2% of the code

 The first coverage study is often a shock
- but it WILL improve code quality

* Three phases
- build time
- run time
- analysis time

How does it work: build time

* Add a special make target

— adds --coverage gcc option
* interesting compile lines
e all link lines
« gcc<4.0: -fprofile-arcs -ftest-coverage (both)

- adds -g, removes -O

« Compiler adds instrumentation to object files
- code at basic block boundaries to counter++
— array of counters, 1 per bb->bb arc

— descriptor for the file & counters
» global c'tor reqisters descriptor before main

« Obscure internal compiler unit
* A sequence of instructions ending at a
change of control flow

int
function cnei{int x)
[
if (=2 & 1)
X += function_two(x);
el se
¥ += function_three(x);
return x;

« Compiler writes graph file
- foo.gcno in the same directory as foo.o
- contains extra information
« more detailed than normal debug info

* line numbers <-> basic blocks
« basic block graph per function

— gce<3.4: foo.bbg

e |Instrumented code counter++ as it's run

» Special atexit handler
- writes counters to a data file per source file
- foo.gcda in the same directory as foo.0
- also on fork and execve.

How does it work: analysis time

» Post processor reads .gcno, .gcda and

source to build a report
- gcov: text tool, comes with gcc
- Icov: massages gcov output into HTML
- ggcov: a GUI (by me)
» Report shows which code was run
* The art is in figuring out what to do with all

that information

e ggcov Summary window
- don't read too much into these numbers, yet

r. GGCov: Summary callgraph_diagre - o x

File Settings Windows Help

) Owerall

‘® Filename |callgraph_diagram.C

() Function)const (cov.G)

callgraph_diagram.C

1 Btu1

| Range

Lines 300+19/428 70.1+4.4% || NEGNGGNEE
Functions 5+15/32 15.6+46.9% [NV
Galls 65/140 FLyey 000 |
Branches 170/273 62.3% [N
Blocks 354/565 62.7% [NG

WView...

Wiew. .

Wiew. .

-

Suggested procedure (1)

« Get the latest ggcov from SourceForge

* Run the entire test suite to completion, once
* Do not try to focus on individual tests (yet)

« Open ggcov's File List window

e Sort on the Lines column

 Start with the file with the lowest Lines %

* An example of ggcov's Files Window

GGCov: File List

File View Setlings Windows Help

‘ File l Blocks | Lines v I Funcﬂunsi Calls i EBranches 1'
I report.C 0.00 3.36 33.33 0.00 0.00

; cov_dwarf2.C 0.56 3.68 14.29 1.04 0.00

! cov_elf.C 1.06 463 18.18 1.79 0.00

I MVEC.C 7.14 10.00 2222 3.85 7.41

I cov_stab32.C 222 10.64 40.00 J.45 0.00

I COMMmMOon.c 8.70 12.00 37.580 8.33 /.69

* For each interesting file...

» Open the file in the Source window

« Scroll through looking for large fragments
coloured red = code not run

* An example of ggcov's Source Window

) GGCov: Source cov_file.C - o x

EFile View Settings Windows Help
Filenames: |c:uv_fi|e.t: hd | Functions: |]cunst hd |
Line ” Gount ” Source

N T] 1 T
1117 |
111% clrool=an
111% coy_file tri:iread goc3idl _bbhg fileicovio bt *iol
11z0 62 |
1121 62 io—=set_formaticovio t::FOFMAT GCOCI4L)
1122 62 little endian_ = TFUE;
1123 62 return read_ gocl _bbg file commoniioc, BBG_VEESION_ _GCC3I4) »
1124 1
1125 —
1126 glhoolean =
1127 cowv_file t::read goc3dl kg fileicovio b *io) —
1128 ##HH44 |
1129 #E##H# io—s»set formati{covio t::FORMAT GCC3I4B) »
1130 ####4# little endian_ = FALSE:
1131 #E##H# return read_ goc3 _bbhog file commoni(ioc, BBG_VERSION GCC34)
1132]
1133
1134 fFre—m——————=—=—== == = = = = = = = === = = = = = = = =_=_=_=_= *f
1135 -

Suggested procedure (3)

« Using your knowledge of the code, map red

fragments back to 1 or more of:

- a software feature

— a user action

- a configuration option

- possible input data

- an environmental effect (compiler, libc)
- an error condition

* As you go, keep a list of the untested

features etc
- this is your list of new test cases to write

Why do it this way?

* In your first coverage study, there will be
large amounts of untested code

* You want to improve the test suite as fast as
possible

» The suggested procedure aims to test more
code in broad brush strokes first

* No tool to merge data from separate runs (!)

 An a ternatlve way of flndlng files to focus on

Eile View Settings Windows Help

FY

What to expect

« Setting up your first study will take lots of
time & effort
- but worth it...persevere!

* Your test suite sucks
- probably more than you think

- the first numbers are usually pretty frightening
- e.9. Samba4: 17%

» Entire features of your code are not tested

- even if your coverage numbers are good
- e.g. XFS QA: 70% but RT volumes not tested!

What NOT to expect (1)

« Don't expect perfect numbers
- bugs and corner cases in the toolchain
— compiler optimisation does strange things
— other effects (more on this later)
- S0, concentrate on finding uncovered code
- look for the red code!

- and don't sweat the details
« “OMG, this line was executed 3 times instead of 4!!”

What NOT to expect (2)

« Don't aim for 100% coverage
- you will never exercise 100% of real world code
- beyond the point of diminishing returns
- don't waste time trying
« unless they pay you by the hour
» assert() problem
— macro generates code which in a correct

program Iis never run
« spuriously reduces coverage counts

What NOT to expect (3)

* malloc()/new failure branches
- In most programs, the only useful way to handle
this is exit().
- unless you have external resources which need
cleaning up, there is no point testing these paths

* C++ exception paths

— compiler adds hidden code to functions
« stack unwinding, calling d'tors
« many of these simply won't happen
« spuriously reduces coverage counts

* No coverage tool will tell you when to stop

testing
- If it does, don't believe it
- fundamentally an economic choice

- suggested criteria:
* every user-input option tested
* every source fragment >= 3 lines is tested
e but not error paths

What NOT to expect (5)

» Coverage will not write tests for you
- programmers still needed, yay
* ggcov will not help you reduce your test suite
— coverage does not provide enough information
to make this decision wisely
— you probably have too few tests anyway
« Coverage will not help you write test001
- but you already know that all your code is
untested...

Separate test machine
Performance impact
Build system integration
Multi-process programs
Multi-threaded programs
Linux kernel

Separate test machine

* Instrumented code writes .gcda files into the

source directory
- using an absolute path
— source directory needs to be visible, writable
from test machine
e Solutions:
- NFS mount the source on the same path
- Make a dummy directory and copy the .gcda files
back before analysis
« Cross-platform problematic
- use same arch for analysis as runtime

Performance impact

Actually, quite light

Instrumentation is sparse
- only arcs between blocks
- not all the arcs (spanning tree)

Instrumentation is cheap
- increment of a 64b or 32b global variable

Impact << valgrind, Purify.
Disabling optimisation may have an effect

Build system integration

* Depends on your build system

A single make target to instrument all code
- larger projects may want to be more specific

* One target to enable all the compile options
- add --coverage
- remove -0 etc
- add -g
- don't strip executables
- e.g. overrides $CCOVFLAGS, normally empty,
used in $CFLAGS and $LDFLAGS

« Works fine
* When writing .gcda files, instrumented code
takes file locks and accumulates counts

Multi-threaded programs

* On a single CPU, works fine

« On multiple CPUs, doesn't work
- instrumented code increments global counts
non-atomically
- spanning tree => one corrupted count breaks the
whole function

« GCC patch to do atomic increments

— gcc bug#28441
— waiting on paperwork

 |IBM patch

- allows kernel code to be built with --coverage
— exports counts via / proc
— ability to zero counts
— compiler version specific
* Issues on SMP
- need gcc atomic increment patch
— or disable all except 1 CPU
- or run a UP kernel

* If coveraging filesystems, ensure all
instances are unmounted before extracting

data
- =>/ should be a different fs

« Some core fs/or mm/ code is nearly
iImpossible to coverage properly

* http://ggcov.sourceforge.net/

» gcc docs
- http://gcc.gnu.org/onlinedocs/gcc4.1.1/gcc/Geov.
html
 |BM kernel coverage patch
- http://Itp.sf.net/coverage/gcov-
kernel.readme.php
 Linux Test Project
- http:/Itp.sf.net/

http://ggcov.sourceforge.net/

