ggcov: A Practical Guide To Making

Your Test Suite Suck Less

Greg Banks <gnb@users.sourceforge.net>

Abstract: Test coverage is a well known but underused technique for
measuring the effectiveness of test suites. This paper provides advice
derived from personal experience performing coverage studies using

ggcov, the author's graphical coverage browser tool. This includes

guidelines for interpreting results, advice on what to expect from coverage
studies, issues with multi-threaded programs, and a brief description of
issues discovered when coveraging the Linux kernel.

Scope

This paper discusses practical test coverage
techniques specific to the C and C++ languages,
using the GNU Compiler Collection version 4.1.0 on
UNIX-like platforms. Similar techniques apply to
other platforms, other compilers, and other
languages but are not discussed here.

The techniques discussed are (to the author's
knowledge) licence-neutral, i.e. they can be applied
legally to software which is released under any
software licence from BSD to GPL to entirely
proprietary. In particular, the gcc code that is linked
into an instrumented executable is released under a
licence based on the GPL but with a specific
exception to allow it's use with any programs,

L

without the usual “infection™".

What Is Test Coverage?

Test coverage is a well-known and standard set of
software engineering techniques which measure how
much of the Code Under Test is run (i.e. “is
covered”) when it's test suite is run.

The justification for using test coverage is based on
the following chain of logic:

« code which works today may fail tomorrow, due
to changes in the code itself, changes to other
code which interacts with it, or changes in the
build-time or run-time environments.

 thus, for code to work and to remain working it
must be tested regularly.

- this implies the existence of a suite of tests
which are run regularly (and hopefully
automatically).

« however, the tests are only useful in so far as
they actually cause the code under test to be

1 The author is not an lawyer.

executed.

Test coverage provide metrics which measure the
quality of a a test suite, and thus indirectly the
quality of the code.

In the author's experience, test coverage is sorely
underused in software engineering practice. Too
often, only lip service is paid to the testing process,
and techniques designed to improve the testing
process are entirely ignored. Even when the
development team uses methodologies designed to
emphasise testing often and early, too much faith
may be placed in the existence of large numbers of
tests and too little effort may be expended on
measuring the quality of those tests.

This paper was written in the hope of achieving
wider use of test coverage, thus indirectly better
software quality.

How Does It Work?

A test coverage study proceeds in three phases.

The first phase is at build time. A special path
through the build system (e.g. a make target) is
added, which causes the gcc option --coverage to be
added to both the compile and link lines?.

This has several effects. It causes the compiler to
insert instrumentation at basic block boundaries in
the object code; these are extra instructions which
count the number of times the basic block is
executed. The compiler also adds an array to hold
the counters, a data structure describing them, and a
global constructor which registers the descriptor
before main is run.

In addition, the compiler writes a data file in the
same directory as the object file, called foo.gcno’

2 On versions of gcc before 4.1, use both the options
-ftest-coverage -fprofile-arcs.
3 The file extension has changed several times in gcc's

-1-

mailto:gnb@alphalink.com.au

where foo.o is the object file name. This file
contains information which later will be used to map
the counters back to source file names and line
numbers.

The second phase is at run time. Counters are
incremented as instrumented code executes. When
the program exits', a special atexit handler writes the
counter values into files. Each file is called
foo.gcda and is located in the same directory as the
corresponding foo.o.

The third phase is analysis. A post-processor, such
as the gcov program shipped with gcc [FSF06], or the
author's ggcov tool [BANO06], to combine the
information in the .gcno, .gcda, and source files and
to present coverage information to the developer.

How To Interpret Results

When ggcov is first run, it shows a window with
some stacked bar charts which report overall
coverage statistics for the entire program. It's
important not to assume too much deep meaning for
these numbers. The most use that ought to be made
of them is to compare the first digit of the overall
line coverage percentage before and after a coverage
study.

The procedure I find most useful is as follows.
Run the entire test suite to completion once and then
run ggcov; do not focus on coverage from individual
tests®. Identify which source files have the lowest
line coverage.

& GGCov: File List e X
File Miew Settings Windows Help

File Elocks Lines ¥ Functions GCalls Branches ﬁ
reportG 0.00 3.36 33.33 0.00 0.00
cov_dwarf2.C 056 3.88 1429 1.04 0.00
cov_elf.G 1.06 463 18,18 1.79 0.00
mvc.c 7.14 10.00 2222 3.85 741
cov_stab32.C 222 10.64 40.00 3.45 0.00
GOMMon.G 8.70 12.00 37.50 8.33 7.69

E3)

Fig 1. ggcov's File List window
One way is to use the File List window which
shows all the source files and their coverage as
percentages, and sort on the Line or Block columns.
For example, in Fig. 1, report.C and cov_dwarf.C
would be good candidates.

history.

1 To preserve counter semantics, this also happens at
other times, like fork and execve system calls.

2 One reason for this recommendation is that there is no
easy way to merge coverage results from multiple
.gcda files.

(3 GGCov: Lego Diagram = @ =3

File View Settings Windows Help

allgraph diagram.C 62.6 =

Eov_block.C 50.518 |

ov_file.C 34.52%

arser.C §3.40%

&l [*]

Fig. 2: ggcov's Lego Diagram window

Another way is to use the Lego Diagram, which
shows block coverage scaled by the number of
blocks in each file, and look for large areas of red
colour. For example, in Fig. 2, cov_dwarf2.C and
cov_file.C would be good candidates.

Address all the source files, starting with those
files with low line coverage. Use the Source
Window and scroll through the code looking for
fragments of code with multiple consecutive lines
coloured red (i.e. untested). For example, in Fig 3

the second function is a good candidate.
[GGCov: Source cov.file.C

| v l Functions: |)const

Source

File View Settings Windows Help

Filenames: [cov_fi\e c

e J[com]

liiw 1
1117
111z
1112

ghoolean
cov_file t::read_gcc34l_bbg fileicovio t *ia)
2
io—sset_format (covio_t::FORMAT_GCC34L) ;
little_endian_ = TRUE;
return read_gee3_bbg file commeoniic, BEG VERSION GCC34) ;

o oo om

1124 1

gboolean

cov_file k:iread_geoidb_kbg fileicovio_t *ia)
HEHHEE |
i
EELEEE]
EELEEE]

io->set_format (covie_t::FORMAT GCC34E);
little_endian_ = FALSE;
return read_geoco3_bkbbg file commoni(io, BEBG_VERSION_GCC34);

Fig. 3: ggcov's Source window

Use your understanding of the code, or clues in
function names or comments, to map that code back
to a high-level feature (e.g. some particular
commandline option) that has not been tested. Keep
track of which features are untested, and how many
times you see untested code which implements that
feature. After a complete run through the source,
that list of tests can be used as a list of tests to be
written, and a measure of how important each test is.

-0

What To Expect

You should be prepared to spend some time and
effort setting up the coverage study and interpreting
the results, mostly due to imperfections in the
toolchain. However the results will be worth it, so
persevere.

The first time you run a coverage study, be
prepared to be surprised by how poorly your test
suite actually covers the code. This is because
manual test suite design is a poor substitute for
coverage-driven testing (unless you have an
enormous army of testers). Your initial reaction is
likely to be dismay.

For example, when members of the Samba team
first used ggcov to measure the coverage of the
Samba4 test suite they found that only 17% of the
source lines were covered.

Even if your test suite does achieve respectable
numbers in your first coverage study, it's still likely
that entire features of the code are not tested.

For example, the XFS QA team in SGI recently did
a coverage study of the XFS test suite. Nearly 70%
of the XFS code was covered, but entire features
such as real-time volumes were never tested.

It is highly recommended that you use the latest
release of ggcov to get all the relevant bug fixes. In
particular, be aware that the Debian package may lag
behind to the point of not being usable.

What Not To Expect

Do not expect to get perfect numbers from the
coverage tool. There are enough bugs in the
compiler and post-processors, and enough room for
differences in interpretation, that you will see the
occasional strange number'. Concentrate on finding
code which is never executed at all, rather than
trying to work out why a particular line is reported
as executed 4 times instead of 3. In ggcov, the
colour-coding helps you think this way.

Do not aim to achieve 100% coverage of your code.
This is a very tempting target, but is only realistic
for tightly constrained artificial examples or
projects with extremely high quality requirements
(and costs). Your code contains many arcs and even
whole lines, the testing of which lies beyond the
point of diminishing returns, e.g. code which
handles memory allocation failures, or C++

1 Examples of code which cause problems include static
inline functions in headers, for(;;) loops, and source
lines containing multiple function calls.

exception paths.

There is also the problem of the assert macro.
This macro emits code which will never be executed
in a correctly functioning program, regardless of
how many test cases you add. Because ggcov
detects and reports the difference between a source
line which is entirely executed and a line which is
only partly executed, lines containing assert will
spuriously reduce the overall line coverage result.
Likewise, the branch which is never executed will
reduce the overall branch coverage result.

Do not expect a coverage tool to tell you when to
stop testing. You need to decide for yourself where
the point of diminishing returns lies. I recommend
continuing until every value of every user input
option has been tested, and every source fragment of
3 or more consecutive lines which is not an error
case has been tested.

Do not expect a coverage tool to write tests for you.
Coverage tools are simple and do not understand
your code well enough to do that.

Do not expect a coverage tool to be able to reduce
(or “optimise™) your test suite automatically. Some
coverage tools include a utility which claim to be
able to do this but this claim is based on false
assumptions. The first false assumption is that you
have too many tests; the second is that simple line
or branch coverage can be a useful indicator that
tests are redundant.

Do not expect a coverage tool to guide you when
writing your first test. At that time you already
know that none of your code is tested, so coverage
will not tell you anything new.

Separate Test Machines

On program exit, the instrumented code writes
counter values to .gcda files in the original source
directory, using absolute pathnames. At analysis
time, the post-processor needs to see those .gcda
files.

If the tests run in an environment where that
directory doesn't exist or isn't writeable, such as a
separate test machine or under a different user id,
the counter values will be silently lost.

Currently, there are two approaches to solving this
problem. The first is to make that directory visible
to the test program, e.g. by remotely mounting it
using NFS. The second approach is to create a
writeable dummy directory at the expected
pathname, and after testing copy the .gcda files back
to the build machine, e.g. using tar.

-3

The .gcda files are in general not cross-platform,
so the build, run and analysis phases should all
proceed on the same machine architecture, e.g. i1386.

Performance Impact

The performance impact of the gcc coverage
instrumentation is quite light. This is partly because
the instrumentation comprises relatively inexpensive
increments of global counters, and partly because
gcec takes care to instrument only a minimal subset
of the branches in each function.

However, coverage can interact badly with
optimisation, so the usual recommendation is to
remove all optimisation options when building for
coverage. This will affect the performance of your
program.

Build System Integration

How you add coverage support to your build
system depends on what build system you use, but a
few general recommendations may be useful.

For small to medium sized projects, a single target
in the top level makefile is the most convenient.
Larger projects may wish to only coverage specific
subdirectories at a time.

Provide a single target which does all the necessary
build-time steps. In particular, turn off optimisation
options (-O), enable debug symbols (-g) and disable
executable stripping.

Multi-process/Multi-threaded

Coveraging programs which comprise multiple
single-threaded processes is known to work, even
when the programs share source code. The libgcov
code which writes .gcda files is careful to handle
this case; it uses POSIX file locking calls and
accumulates counters in the file rather than writing
them anew.

Unfortunately, programs with multiple threads of
control in a single address space are a different
matter. The instrumented code does not explicitly
handle this case; the counter increments are not
atomic and not protected by locks. If such programs
are run on multi-CPU hardware where actual
parallelism is possible, the counters may become
corrupted. An unfortunate side-effect of minimal
instrumentation in gcc is that a single incorrect
counter can render impossible calculation of any
coverage data for the entire function.

A gcc patch to enable atomic incrementing of

counters [GNUO06] has been written to solve this
problem, and may be available in gcc 4.1.2.

Coveraging the Linux Kernel

Coveraging the kernel poses unique challenges. A
patch from IBM [FRA06] needs to be applied; this
patch allows the counters to be exported to
userspace via a /proc interface. The patch also
grants the ability to reset counters, e.g. between
tests.

Multi-processor machines will experience the
problem of non-atomic counter increments.
Possible solutions are to use the gcc patch, or run the
machine in a uni-processor mode (e.g. booting a uni-
processor kernel or disabling all but one CPU on the
kernel commandline).

The kernel also suffers from a problem not seen in
userspace. Because the counters are extracted while
the program is still running, any functions which
have not completed (because tasks are still executing
them) will have counters in an inconsistent state.
This can lead to the same counter corruption
problem seen for MT programs.

Because the counters are extracted using a
filesystem interface, this means there are several
functions in the VFS layer and generic filesystem
code for which coverage data can never be gathered.

Indeed, because the coverage data needs to be
written to some filesystem as it is copied from the
kernel, the same applies to functions in the write
path for that filesystem. Thus, when coveraging
filesystem code it is advisable to set up the machine
with different types of filesystems for root (/) and
the filesystem under test.

References

[BANO6] Greg Banks, ggcov coverage browser,
http://ggcov.sf.net/

[FRAO6] Hubertus Franke, Nigel Hinds, Peter

Oberparleiter, Rajan Ravindran, IBM Linux kernel
coverage patch, http://ltp.sf.net/coverage/gcov-
kernel.readme.php

[FSF06] Free Software Foundation, GCC Manual,
http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/
Gceov.html

[GNUO06] Free Software Foundation, Need atomic
increment of gcov counters for MP programs,
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=2844
1.

[LTPO6] Linux Test Project, http://ltp.sf.net/

-4 -

	ggcov: A Practical Guide To Making
	Your Test Suite Suck Less
	Scope
	What Not To Expect

